Structural Standards for Installation, Alteration and Maintenance of Communication Towers, Antennas and Antenna Supporting Structures

ANSI/TIA-1019 “DRAFT”

Ernie Jones, PE
Electronic Research, Inc.

Don Doty
Stainless, LLC

www.stainlessllc.com

N A B
2009
History

- ASCE 37-02 Design Loads on Structures During Construction
 Approved in 2002

- TIA-1019 Gin Pole Standard was approved January 9, 2004.

- TIA-222-G
 - Revision of TIA/EIA-222-F
 - Standard for design of communication structures – Aug. 2005

- TIA-1019-Construction Standard “Fall of 2009”
 - Includes the Gin Pole Standard
Construction Mishaps
Industry Construction Standard - Benefits to the Tower Owner -

- Prevent Accidents
 - Saves Lives
 - Reduces Liabilities
 - Reduces Delays in Project Completion
- Prevent Undetected Structure Damage
- Reduce Construction Costs by Providing Safe Engineering Procedures and Guidelines Without Over-Designing
Tower Erection & Safety

- Hire a qualified contractor
- Request certificates of all insurance coverage’s
- Safety must be required in contract documents
- Check references
- Ask questions
Three Phases

"in it's simplest form, new towers can be separated into three phases:

Concept

Design

Construction
Guyed Towers

- Tall towers require special rigging
- Number of available crews
- Rigging Plans
- Check your policy
- Planning is essential
Self-supporting tower have unique challenges

- RF Safety
- Communications
- Coordination
- Staging
Scope and Objective

- Consider construction equipment loading effects on a structure being erected or modified.
 - Cranes
 - Gin Poles
 - Lifting Blocks
 - Attached Rigging

- Accurate prediction of weather related loading during construction duration period.

- Providing an engineered approach to complete work safely throughout the entire construction process.
Construction Safety & Efficiency Comes from “Proper Preplanning” With Rigging Plans

<table>
<thead>
<tr>
<th>Class</th>
<th>Definitions</th>
<th>Minimum Level of Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Removal or addition of antennas, mounts, platforms, etc. that are light in comparison to the overall supporting structure and do not require the use of a gin pole or a gin pole not rated higher than Class A.</td>
<td>Competent Rigger</td>
</tr>
<tr>
<td>II</td>
<td>Rigging plans utilizing pre-approved installation methods.</td>
<td>Qualified Person</td>
</tr>
<tr>
<td>III</td>
<td>Custom or infrequent installation methods, removal of structural members, special engineered lifts, and unique situations</td>
<td>Qualified Person with Qualified Engineer</td>
</tr>
</tbody>
</table>
Competent Rigger: a person knowledgeable and experienced with the procedures and equipment common to the Communication Structures Industry, and trained to identify hazards with authorization to take prompt corrective measures.

Qualified Person: a person knowledgeable, experienced, trained and capable of developing rigging plans and that has successfully demonstrated the ability to solve, resolve and coordinate construction related to the Communication Structures Industry.

Qualified Engineer: a professional engineer knowledgeable and experienced in the Communication Structures Industry.
Base Rigging

- Rigging Plan
- Licensed Engineer
- WLL
- Signage
- Barricades
- Site Safety
Operational and Non-Operational Conditions

- **Operational**
 - Loading conditions of a structure during the actual lifting sequence.
 - Typically governs the strength requirements for lifting devices and their associated rigging.
 (gin pole and attached rigging equipment loads)

- **Non-Operational**
 - Loads on a structure when lifting in not performed.
 - Typically governs the strength requirements for the structure under construction.
 (wind load conditions based on construction duration factor)
Operational and Non-Operational Conditions

“Operational” Condition – During Construction Procedures
A Uniform effective 30 mph 3-sec gust wind speed used during lifts

“Non-Operational” Condition – Weather Related Conditions
Winds from 45 mph to 90 mph based on the construction duration period.

Non-Operational

Operational

30 mph Wind

45 to 90 mph Wind
All lifts within parameters of Gin Pole Charts, or Crane Charts, approved by an Engineer or Equipment Manufacturer.
Vertical and Tilted Gin Poles Covered in Standard
Load Tests
For Checking Entire Rigging System
(Operational Conditions)

- Load test to 1.5 times the anticipated load.
- If slip resistance is counted on for restraint a load test is required.
- Required for hoist if anchor calculations are not possible, or reliable.
Lifting Existing Loads from Structures

- Weight verification necessary for load testing.
- Use of a load measuring device
- Unless the load weight is confirmed by accurate documentation or by calculation, the weight shall be field verified prior to making the lift.
Hoist Anchorage May Require Load Testing

- Hoist On Trailer Anchored with Vehicle (Will Require Load Testing)
- Hoist Anchored to a Dead-Man Anchor
- Hoist Anchored to a Foundation Top
Non-Operational Duration Wind

“Wind Loads During Construction Period”

<table>
<thead>
<tr>
<th>Construction Period</th>
<th>Minimum Factor</th>
<th>Wind Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous work period</td>
<td>0.50</td>
<td>45</td>
</tr>
<tr>
<td>Less than 24 hours (overnight)</td>
<td>0.60</td>
<td>54</td>
</tr>
<tr>
<td>24 hours to 1 week</td>
<td>0.67</td>
<td>60</td>
</tr>
<tr>
<td>1 week to 6 weeks</td>
<td>0.75</td>
<td>67.5</td>
</tr>
<tr>
<td>6 weeks to 6 months</td>
<td>0.80</td>
<td>72.0</td>
</tr>
<tr>
<td>Greater than 6 months</td>
<td>1.00</td>
<td>90</td>
</tr>
</tbody>
</table>

[Wind Speeds are 3-Second Peak Gust]
Guy Slippage Parameters Provided

- Unequal forces on the structure shall be considered due to the potential of connection slippage!
- Can the structure withstand the unequal load?
- Temporary guy wires may be required

Slippage Im = 1.3
Release Im = 2.0
Non-Slip End Connections

- End Connections that when properly installed have not had a history of slippage problems

Preformed End

Swage End

Turn Back End

Wedge Socket End
Slippage Connections Defined

- When frictional clamping devices are used that may slip during construction, the forces on the structure due to potential effects from *slippage or cable release* must be considered.

- The structure shall be analyzed for this potential slippage.
Temporary Backup System

- The backup system shall be of non-slip wire rope termination arranged to limit slippage to \(\frac{1}{2} \) face width of tower, but not less than 12 inches or more than 36 inches.
1. Any lift to be allowed on a special basis, which is outside of the standard “Load Chart”, shall only be allowed at the direction of a qualified engineer.

2. Construction Lifting in higher than 30 mph winds

3. Special monitoring and measuring conditions, as specified by the engineer, shall be provided and used in the field during all “Special Engineered Lifts”.
Monitoring Gin Pole Tip Deflection During a Lift
"Thru a Transit"
Capstan Hoist & Use of Synthetic Rope

- Factor of Safety for Rope at 10 to 1. (to account for knots)
- The lifted load shall not exceed the hoist rated capacity.
- 1.5 times lift weight load test required – this will usually limit loads lifted with capstans to 600 lbs. or less!
Capstan Load Test: Requires Load Test of 150% of Lifted Load

- Locate Top Block at Panel Point
- Load Test at 600 Lbs
- Hand Tag Line to Capstan on Truck
- Test Wt.
What Owners Need To Know!

1. This industry construction standard will be available in the near future.

2. It will be a basis to allow construction workers and engineers provide safe construction procedures without being overly conservative due to the lack of readily available, or properly understood, guidelines.

3. In the event it is required for construction projects it should lessen the liabilities of all parties participating in its proper use.

4. When properly used it will prevent future construction accidents and structure collapses!
NATE Checklist for Evaluating Qualified Contractors

Checklist for Evaluating Qualified Contractors

Name of Contractor: ____________________________
Contact Person for Contractor: __________________
Title: _______________________________________
Address: ____________________________________
Telephone: ________________________________

☐ The contractor has obtained insurance coverage appropriate for the scope of work, prior to commencing the work (e.g. worker’s compensation; general liability, etc.). (Attach Certificates of Insurance.)

☐ The contractor has the necessary experience, references and capability to properly perform the specific job at hand.

☐ The contractor has a written safety program and agrees to conduct regular safety audits of its job sites by a competent person.

☐ The contractor agrees to provide a site-specific safety plan including rigging, structural and RF safety procedures, and fall protection requirements for this specific job.

☐ The contractor agrees there will be a competent and qualified person at the project site who will conduct daily safety audits.

☐ The contractor agrees to maintain written records of the safety audits for a period of at least one year.

☐ The contractor requires pre-employment physical agility or physical fitness tests to determine ability to perform job tasks.

Page 2

☐ The contractor conducts drug screening of employees for unlawful use of controlled substances.

☐ The contractor provides an orientation and awareness program for new hires prior to performance of any work.

☐ The contractor ensures that their tower climbers have been properly trained and understand OSHA regulations in the areas of fall protection and rescue.

☐ The contractor agrees to conduct a hazard assessment to determine the requirements for personal protective equipment, including fall protection.

☐ The contractor maintains written documentation of all training as required.

☐ If the contractor is required to maintain OSHA 300 logs, they have submitted those documents for the past two years. For those companies not required to keep OSHA 300 logs, they have provided the number of employees they have and a report on accidents they have sustained, including the nature, type and number of accidents for the past two years.

☐ The contractor agrees to notify the Company in writing if subcontractors are to be used prior to the use of such subcontractors.

☐ The contractor agrees that any subcontractors hired will be required to meet the same contractor requirements outlined in this document.

☐ The contractor agrees to adhere to the provisions of OSHA Directive CPL 2-1.36 if any personnel hoisting is to be conducted.

☐ The contractor agrees to maintain good housekeeping on the job site.

Individual Completing Questionnaire: ____________________________ (Print Name)
Title: __
Date: ________________

This document will be kept on file in the Safety Manager’s office.
Contractor Qualifications, RFP, Comparison Form

- Hire a qualified contractor
- Check their references
- Certificate of insurance
- Rigging Plan
MULTI-EMPLOYER ISSUES

- Potential civil and criminal liability
- Amendments currently being aggressively pursued in Washington will enhance criminality (for amputations, disfiguring injuries, permanent loss of brain function) as well as to make a conviction go from:
 - Current:
 - 6 mos imprisonment
 - Fine of $500K against the employer
 - Fine of $25K against the manager
 - To a felony
 - Minimum of one year imprisonment
 - No limitations on the fines
Thank You!

T I A Standards & Technology Department
2500 Wilson Boulevard, Suite 300
Arlington, VA 22201 USA
1-703-907-7700

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112-5704
1-800-854-7179